Rational Chebyshev Approximations for Fermi-Dirac Integrals of Orders $-\frac{1}{2}$, $\frac{1}{2}$ and $\frac{3}{2}$ *

By W. J. Cody and Henry C. Thacher, Jr.[†]

Abstract. Rational Chebyshev approximations are given for the complete Fermi-Dirac integrals of orders $-\frac{1}{2}$, $\frac{1}{2}$ and $\frac{3}{2}$. Maximal relative errors vary with the function and interval considered, but generally range down to 10^{-9} or less.

1. Introduction. The complete Fermi-Dirac integrals are usually defined by

(1)
$$F_k(x) = \int_0^\infty \frac{t^k dt}{e^{t-x} + 1}, \qquad k > -1,$$

although Dingle [4] prefers the definition

(2)
$$\mathfrak{F}_{k}(x) = (k!)^{-1} \int_{0}^{\infty} \frac{t^{k} dt}{e^{t-x}+1}$$

which places no restriction on k. We will use definition (1) but will employ some formulas, suitably modified, derived by Dingle.

These integrals appear in a variety of applications subject to Fermi-Dirac statistics, for example in the theory of semiconductors. The most frequently used functions are those for which k is either an integer or a half-integer. Function values are quite difficult to compute for k a half-integer and x positive. Consequently a number of useful tables have been published over the last 30 years (e.g., [1], [2], [4], [9]). Recently Werner and Raymann [12] used interpolation in the McDougall and Stoner [9] table to generate a compatible pair of Chebyshev approximations for the case $k = \frac{1}{2}$. Their work allows easy computation of $F_{1/2}(x)$ with a maximal relative error less than 5×10^{-4} . The present work presents portions of the arrays, termed by Rice [11] the L_{∞} Walsh arrays, of rational Chebyshev approximations for $k = -\frac{1}{2}$, $\frac{1}{2}$, and $\frac{3}{2}$. Maximal errors range down to 10^{-9} or less.

2. Functional Discussion. The well-known expansion [4], [9]

(3)
$$F_k(x) = k! \sum_{r=1}^{\infty} (-1)^{r-1} \frac{e^{rx}}{r^{k+1}}$$

is convergent for k > -1 and x < 0. The Taylor series

(4)
$$F_k(x) = k! \sum_{r=0}^{\infty} \frac{x^r (1 - 2^{r-k}) \zeta(k+1-r)}{r!}$$

where ζ is the Riemann zeta-function, is convergent for k > -1 and $|x| < \pi$.

^{*} Work performed under the auspices of the U.S. Atomic Energy Commission.

Received March 7, 1966.

[†] Present address: University of Notre Dame, Notre Dame, Indiana.

For positive x, Dingle [4] has shown

(5)
$$\mathfrak{F}_{k}(x) = \cos \pi k \mathfrak{F}_{k}(-x) + 2 \sum_{r=0}^{\lfloor (k+1)/2 \rfloor} \frac{t_{2r} x^{k+1-2r}}{(k+1-2r)!} + \frac{2 \sin k\pi}{\pi} \sum_{r=\lfloor (k+3)/2 \rfloor}^{\infty} \frac{t_{2r} (2r-k-2)!}{x^{2r-k-1}},$$

where [x] denotes the integer part of x, and

 $t_{2r} = \frac{1}{2} (2\pi)^{2r} (1 - 2^{1-2r}) |B_{2r}| / (2r) !$

where the B_r are the Bernoulli numbers. This expansion is finite, hence exact, for k an integer. However, for k half an odd integer the expansion is only asymptotic, equivalent to the well-known Sommerfeld representation [9]

(6)
$$F_k(x) = \frac{x^{k+1}}{k+1} \left\{ 1 + \sum_{r=1}^n a_{2r} x^{-2r} \right\} + R_{2n}$$

where

(7)
$$a_{2r} = \frac{(1-2^{1-2r})(k+1)!(2\pi)^{2r}}{(k+1-2r)!(2r)!} |B_{2r}|$$

and R_{2n} is a remainder term. Dingle [4], [5], [6] has transformed (5) into a convergent representation by replacing the final sum with

(8)
$$\sum_{r=\lfloor (k+3)/2 \rfloor}^{n} \frac{t_{2r}(2r-k-2)!}{x^{2r-k-1}} + \frac{(2n-k)!}{x^{2n-k+1}} \sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{j^{2n+2}} A_{2n-k}(jx)$$

where

(9)
$$A_s(x) = \frac{-\pi x^{s+1}}{2(s!)\sin \pi s} \left(e^x - e^{-x}\cos \pi s \right) - \sum_{m=1}^{\infty} \frac{(s-2m)!}{s!} x^{2m}.$$

In the Sommerfeld form,

(10)
$$R_{2n} = \frac{x^{k+1}}{k+1} \frac{2}{\pi} \frac{\sin(k\pi)(k+1)!(2n-k)!}{x^{2n+2}} \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j^{2n+2}} A_{2n-k}(jx).$$

The reader is referred to Dingle's works for the derivations of (8) and (9) and for some useful asymptotic expressions for the $A_s(x)$.

3. Approximation Forms. Three different approximation forms and associated intervals were chosen for each function, reflecting the basically different functional behaviours displayed in Eqs. (3), (4), and (6). The forms and intervals are:

(11)
$$(F_k)_{l,m}^{1*}(x) = e^x [\Gamma(k+1) + e^x R_{k,l,m}^{1*}(e^x)], \qquad -\infty < x \leq 1;$$

(12)
$$(F_k)_{l,m}^{2*}(x) = R_{k,l,m}^{2*}(x), \qquad 1 \le x \le 4;$$

and

(13)
$$(F_k)_{l,m}^{3*}(x) = x^{k+1} \left\lfloor \frac{1}{k+1} + \frac{1}{x^2} R_{k,l,m}^{3*}(1/x^2) \right\rfloor, \qquad 4 \le x < \infty;$$

where the $R_{k,l,m}^{i^*}$ are rational Chebyshev approximations of degree l in the numerator and m in the denominator. The first and third forms were also used by Werner and

Raymann [12], although our choice of interval for the third form is different. The choice of intervals used here is the result of experimentation. Reasonable choices of l and m give reasonable accuracy on each interval and, although not optimal in this sense, a given choice of k, l and m results in about the same accuracy for each interval.

4. Computations. All computations to be described were carried out on a CDC-3600 computer in 25-decimal floating point arithmetic.

The basic tools for obtaining the approximations were two versions of the second algorithm of Remes [3], [7]. Functional values were computed as needed in a number of ways. For x < -1, Eq. (3) gave at least 20S results. The series in Eq. (4) was transformed by the QD algorithm [8] into a continued fraction, the first 40 terms of which gave about 11S for |x| < 4 (higher accuracy for smaller x and less accuracy for larger x). Finally the Sommerfeld-Dingle expansion, Eqs. (6)-(10), was the basis for a computation that gave maximal relative errors of 3×10^{-9} for $k = -\frac{1}{2}$, 3×10^{-11} for $k = \frac{1}{2}$ and 5×10^{-13} for $k = \frac{3}{2}$ and $x \ge 4$. Because of large subtraction errors in the Dingle method, these last accuracies appear nearly maximal using 25-decimal arithmetic. All three methods of computation were crosschecked in regions where they overlapped, and were checked for gross errors against existing tables in the literature, although none of the tables contained as many significant figures as the computations. Additional detailed numerical checking was made in the case of the computations based on Dingle's work because of the large subtraction error involved in Eq. (9) for certain values of s and x. As a final

		•		TABLE	IA				
	. ·	$E^{i^{f *}}_{-1_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_{I_$	2, l, m = -1	$00 \log \left\ \frac{F_{-}}{F_{-}} \right\ $	$F_{-1/2}(x) = (x) - (x$	$\frac{(F_{-1/2})_{l,m}^{i*}(x)}{(x)}$	<u>)</u>		
m^l	0	1	2	3	4	5	6	7	8
			i =	1, —∞	$x \leq x$	1			
0 1 2 3 4	65 265	129 345 492 580	187 418 580 714 806	243 486 661 807 934	298 552 738 893 1030	351	404	457	510
			i	= 2, 1	$\leq x \leq 4$				
$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\end{array}$	44	173 266	285† 312 413	$316 \\ 362 \\ 561 \\ 744$	397 484 752 794 879	534† 557 795 822	558 863	621 701	727
$i=3, 4 \leq x < \infty$									
0 1 2 3 4	317†	348 381	454† 465 524	465 616† 630	503 560 633 762	566 600	607	617	644

† Nonstandard error curve.

				TABLE	IB				
		E_1^i	$l_{2,l,m} = -$	$100 \log \left \frac{F}{-} \right $	$\frac{F_{1/2}(x) - (F)}{F_{1/2}(x)}$	$\frac{1/2}{1/2} \frac{1}{1/2} $	80		
m ⁱ	0	1	2	3	4	5	6	7	8
	<u>, </u>		i =	1, -•	$\circ < x \leq x$	1			
0 1 2 3 4 5	109 271	181 359 495 586 746	247 439 588 715 811	309 513 674 812 935	369 584 755 902 1033	428	485	542	598
			i	= 2, 1	$\leq x \leq 4$				
0 1 2 3 4 5	21	118 207 289 371 456 544	265 374 436 516	$393 \dagger 427 531 648$	431 667 846 905	519 614 802 904	666† 691 920	692	760
			i	= 3, 4	$\leq x < \infty$				
$\begin{array}{c}0\\1\\2\\3\\4\end{array}$	312	407 464	480 647†	516 654	586 817	640	652	687	737
† No	nstandard	l error cur E_3^{i}	rve.	$\begin{array}{c} \mathbf{T}_{\mathbf{A}\mathbf{B}\mathbf{L}\mathbf{F}} \\ 100 \log \left\ \frac{F}{T} \right\ \end{array}$	r = IC $r_{3/2}(x) - (F)$ $F_{3/2}(x)$	$\frac{a_{3/2}}{b_{l,m}}$ $\frac{a_{3/2}}{b_{l,m}}$ (x)	œ		
m^{l}	0	1	2	3	4	5	6	7	8
			<i>i</i> =	= 1, -	$\infty < x \leq$	1			
0 1 2 3 4	150 301	232 397 528 622	305 483 626 750 848	374 563 716 850 971	439 639 801 944 1072	503	565	625	685
			i	= 2, 1	$\leq x \leq 4$				
0 1 2 3 4	13 59 122 195	79 171	199 304 397	358 479 546 630	499 538 645 766 858	542 781 942	635 737 908	789 819	821
			i	= 3, 4	$\leq x < \infty$				
0 1 2 3 4	291	485† 488	488 637	567 784	643 944	657	699	761	811†
† No	nstandard	l error cu	rve.						

check, the relative error functions

34

(14)
$$\delta_{k,l,m}^{i*}(x) = \frac{F_k(x) - (F_k)_{l,m}^{i*}(x)}{F_k(x)}$$

were plotted on a cathode-ray tube, photographed and examined for smoothness.

Because the approximation forms (11) and (13) correctly emulate the asymptotic behaviour of $F_k(x)$ as $x \to \pm \infty$, the errors (14) vanish asymptotically. Thus computations in the Remes algorithm could be restricted to large finite intervals, generally [-10, 1] in the first case and [4, 60] in the second.

In the original computations all error curves were levelled to at least 3S. The rounded coefficients presented in this paper were separately tested for 2000 random arguments against the original function routines. In each case the maximal error agreed within 2S in magnitude and position with one of the extremal points found in the Remes algorithm.

Out of about 200 different approximations generated for the intervals and approximation forms described above, almost a dozen gave nonstandard error curves on the interval considered, or a slightly larger interval, or computational difficulty because of near-degeneracy. The nonstandard error curves were typified by an extra extremal point of magnitude different from the others, while the near-degeneracy was frequently typified by a pole just outside the approximation interval, and a near-common factor in the numerator and denominator. As expected, if

TABLE IIA

	$F_{-1/2}(x) \cong e^x \left[\Gamma(1/2) + e^x \right]$	$e^x \sum_{s=0}^n p_s e^{sx} / \sum_s$	$\sum_{s=0}^{n} q_s e^{sx} \bigg], \qquad -\infty < x \leq 1$	
8	p_s		q_s	
		n = 1		
0 1	-1.24470 -1.52654	$(00) \\ (-02)$	1.00000 7.98207	(00) (-01)
		n = 2		
$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$	-1.25322 15 -6.01723 59 -1.22715 51	(00) (-01) (-03)	$\begin{array}{c} 1.00000 \ 00 \\ 1.29585 \ 46 \\ 3.54694 \ 31 \end{array}$	(00) (00) (-01)
		n = 3		
0 1 2 3	$\begin{array}{c} -1.25331 & 32212 \\ -1.17174 & 61092 \\ -2.11467 & 70891 \\ -1.26856 & 62408 \end{array}$	(00)(00)(-01)(-04)	$\begin{array}{c} 1.00000 & 00000 \\ 1.75140 & 13572 \\ 8.91719 & 38220 \\ 1.21919 & 85358 \end{array}$	$(00) \\ (00) \\ (-01) \\ (-01)$
		n = 4		
0 1 2 3 4	$\begin{array}{c} -1.25331 \ 41288 \ 20 \\ -1.72366 \ 35577 \ 01 \\ -6.55904 \ 57292 \ 58 \\ -6.34228 \ 31976 \ 82 \\ -1.48838 \ 31061 \ 16 \end{array}$	(00)(00)(-01)(-02)(-05)	$\begin{array}{c} 1.00000 \ 00000 \ 00\\ 2.19178 \ 09259 \ 80\\ 1.60581 \ 29554 \ 06\\ 4.44366 \ 95274 \ 81\\ 3.62423 \ 22881 \ 12 \end{array}$	(00)(00)(00)(-01)(-02)

		TABLE IIB		
	$F_{1/2}(x) \cong e^x \left[\Gamma(3/2) + e^x \right]$	$\sum_{s=0}^{n} pe_s sx \bigg/ s$	$\sum_{s=0}^{n} q_s e^{sx} \bigg], \qquad -\infty < x \leq 1$	
8	p_s		q_s	
		n = 1		
0 1	-3.10391 - 1.00423	$(-01) \\ (-02)$	1.00000 5.38275	(00) (-01)
		n = 2		
$egin{array}{c} 0 \ 1 \ 2 \end{array}$	$\begin{array}{r} -3.13291 \ 80 \\ -1.42756 \ 95 \\ -1.00908 \ 90 \end{array}$	$(-01) \\ (-01) \\ (-03)$	$\begin{array}{c} 1.00000 & 00 \\ 9.98828 & 53 \\ 1.97169 & 67 \end{array}$	$(00) \\ (-01) \\ (-01)$
		n = 3		
0 1 2 3	$\begin{array}{r} -3.13328 \ 14419 \\ -2.80582 \ 65535 \\ -4.71780 \ 05580 \\ -1.18443 \ 08954 \end{array}$	(-01) (-01) (-02) (-04)	$\begin{array}{c} 1.00000 & 00000 \\ 1.43979 & 96246 \\ 5.80877 & 04412 \\ 6.00800 & 57319 \end{array}$	(00)(00)(-01)(-02)
		n = 4		
0 1 2 3 4	$\begin{array}{c} -3.13328 \ 53055 \ 70 \\ -4.16187 \ 38522 \ 93 \\ -1.50220 \ 84005 \ 88 \\ -1.33957 \ 93751 \ 73 \\ -1.51335 \ 07001 \ 38 \end{array}$	(-01) (-01) (-01) (-02) (-05)	$\begin{array}{c} 1.00000 \ 000000 \ 00\\ 1.87260 \ 86759 \ 02\\ 1.14520 \ 44465 \ 78\\ 2.57022 \ 55875 \ 73\\ 1.63990 \ 25435 \ 68 \end{array}$	(00)(00)(00)(-01)(-02)
	$F_{3/2}(x) \cong e^{x} \left[\Gamma(5/2) + e^{x} \right]$	TABLE IIC $\sum_{s=0}^{n} p_{s} e^{sx} / \frac{1}{s}$	$\sum_{s=0}^{n} q_s e^{sx} \bigg], \qquad -\infty < x \leq 1$	
8	<i>p</i> ₃		q_s	
		n = 1		
01	$-2.33268 \\ -1.06386$	$(-01) \\ (-02)$	$1.00000 \\ 3.80655$	(00) (-01)
		n = 2		
0 1 2	$\begin{array}{r} -2.34974 \ 804 \\ -9.90504 \ 038 \\ -1.14559 \ 597 \end{array}$	$(-01) \\ (-02) \\ (-03)$	$\begin{array}{c} 1.00000 & 000 \\ 7.83564 & 382 \\ 1.15033 & 976 \end{array}$	$(00) \\ (-01) \\ (-01)$
		n = 3		
0 1 2 3	$\begin{array}{r} -2.34996 \ 17182 \\ -1.95392 \ 64014 \\ -3.06557 \ 11516 \\ -1.41222 \ 30260 \end{array}$	(-01) (-01) (-02) (-04)	1.00000 00000 1.19434 20572 3.87179 30021 3.08879 90780	(00)(00)(-01)(-02)
		n = 4		
0 1 2 3 4	$\begin{array}{r} -2.34996 & 39854 & 06 \\ -2.92737 & 36375 & 47 \\ -9.88309 & 75887 & 38 \\ -8.25138 & 63795 & 51 \\ -1.87438 & 41532 & 23 \end{array}$	(-01) (-01) (-02) (-03) (-05)	$\begin{array}{c} 1.05000 \ 00000 \ 00\\ 1.60859 \ 71091 \ 46\\ 8.27528 \ 95308 \ 80\\ 1.52232 \ 23828 \ 50\\ 7.69512 \ 04750 \ 64 \end{array}$	(00)(00)(-01)(-01)(-03)

 $(F_k)_{l,m}^{i*}$ had a nonstandard error curve, $(F_k)_{l+1,m+1}^{i*}$ was nearly degenerate. Behaviours of this type have been noted and commented upon before, particularly by Ralston [10] and Rice [11].

The behaviour of the two versions of the Remes algorithm used in these difficult cases points up a basic difference in the numerical stability of the two approaches. For example, the program based on the Fraser-Hart technique [7] failed to converge to $(F_{1/2})_{3,3}^{3*}(x)$ even when 10S initial guesses at the critical points and a 5S initial guess at the maximal error, based on the approximation obtained by the Cody-Stoer technique [3], were used. The difficulty in this case is that the denominator of $R_{1/2,3,3}^{3*}$ vanishes for $x^2 \approx 15.93994663$, while the numerator vanishes for $x^2 \approx 15.93994749$ and the interval of approximation is $16 \leq x^2 < \infty$. This approximation is not very stable numerically.

The techniques devised to handle such nearly-degenerate cases are still being revised, and will be the subject of a future paper.

5. Results. Table I lists the values of

$$E_{k,l,m}^{i*} = -100 \log \max |\delta_{k,l,m}^{i*}(x)|,$$

where the maximum is taken over the appropriate interval, for the initial segments of the L_{∞} Walsh arrays. An examination of the tables indicates that $E_{k,l,m}^{i*}$ is generally close to maximal for fixed k and l + m along the line l = m. Tables II, III and IV present the coefficients for cases l = m, $l = 0, 1, \dots, 4$ for each interval. All coefficients are given to an accuracy greater than that justified by the maximal

	•		
p_s		q.	
	n = 1		
$9.2012 \\ 1.0331$	(-01) (00)	1.0000 7.5323	(00) (-02)
	n = 2		
$\begin{array}{r}1.17909 \ 1\\ 1.33436 \ 7\\ 1.15108 \ 8 \end{array}$	(00) (00) (00)	$\begin{array}{c} 1.00000 \ 0 \\ 8.97500 \ 7 \\ 1.15382 \ 4 \end{array}$	(00) (-01) (-01)
	n = 3		
$\begin{array}{c} 1.07161 \ 9310 \\ 7.59564 \ 5943 \\ 2.52371 \ 0602 \\ 5.09743 \ 3764 \end{array}$	$(00) \\ (-01) \\ (-01) \\ (-02)$	$\begin{array}{c} 1.00000 & 0000 \\ 7.79454 & 5888 \\ 9.21173 & 5007 \\ 2.49051 & 0221 \end{array}$	$(00) \\ (-02) \\ (-02) \\ (-03)$
	n = 4		
$\begin{array}{c} 1.07381 \ 27694 \\ 5.60033 \ 03660 \\ 3.68822 \ 11270 \\ 1.17433 \ 92816 \\ 2.36419 \ 35527 \end{array}$	$(00) \\ (00) \\ (00) \\ (00) \\ (-01)$	$\begin{array}{c} 1.00000 & 00000 \\ 4.60318 & 40667 \\ 4.30759 & 10674 \\ 4.21511 & 32145 \\ 1.18326 & 01601 \end{array}$	$(00) \\ (00) \\ (-01) \\ (-01) \\ (-02)$
	p_s 9.2012 1.0331 - 1.17909 1 1.33436 7 1.15108 8 1.07161 9310 7.59564 5943 2.52371 0602 5.09743 3764 1.07381 27694 5.60033 03660 3.68822 11270 1.17433 92816 2.36419 35527	$\begin{array}{c c} p_{s} \\ \hline & n = 1 \\ \hline 9.2012 & (-01) \\ 1.0331 & (00) \\ \hline & n = 2 \\ \hline -1.17909 1 & (00) \\ 1.33436 7 & (00) \\ 1.33436 7 & (00) \\ 1.15108 8 & (00) \\ \hline & n = 3 \\ \hline 1.07161 9310 & (00) \\ 7.59564 5943 & (-01) \\ 2.52371 0602 & (-01) \\ 2.52371 0602 & (-01) \\ 5.09743 3764 & (-02) \\ \hline & n = 4 \\ \hline 1.07381 27694 & (00) \\ 5.60033 03660 & (00) \\ 3.68822 11270 & (00) \\ 1.17433 92816 & (00) \\ 2.36419 35527 & (-01) \\ \hline \end{array}$	p_s q_s $n = 1$ 9.2012 (-01) 1.0000 1.0331 (00) 7.5323 $n = 2$ $n = 2$ -1.17909 1 (00) 1.0000 0 1.33436 7 (00) 8.97500 7 1.15108 8 (00) 1.15382 4 $n = 3$ $n = 3$ 1.07161 9310 (00) 1.00000 0000 7.59564 5943 (-01) 7.79454 5888 2.52371 0602 (-01) 9.21173 5007 5.09743 3764 (-02) 2.49051 0221 $n = 4$ 1.07381 27694 (00) 1.00000 00000 5.60033 03660 (00) 4.60318 40667 3.68822 11270 (00) 4.30759 10674 1.17433 92816 (00) 4.21511 32145 2.36419 35527 (-01) 1.18326 01601

Таві	LE IIIA	
$F_{-1/2}(x) \cong \sum_{s=0}^{n} p_s x^s /$	$\sum_{s=0}^{n} q_s x^s,$	$1 \leq x \leq 4$

		TABLE IIIB		
	$F_{1/2}(x) \cong \sum_{s=0}^{n}$	$p_s x^s \bigg/ \sum_{s=0}^n q_s x^s,$	$1 \leq x \leq 4$	
8	p_s	· ·	q_s	
		n = 1		
0 1	4.7314 7.7863	$(-01) \\ (-01)$	$1.0000 \\ -9.5883$	(00) (-02)
-		n = 2		
$egin{array}{c} 0 \ 1 \ 2 \end{array}$	$\begin{array}{c} 6.94327 \ 4 \\ 4.91885 \ 5 \\ 2.14556 \ 1 \end{array}$	$(-01) \\ (-01) \\ (-01)$	$\begin{array}{c} 1.00000 \ 0 \\ -5.45621 \ 4 \\ 3.64878 \ 9 \end{array}$	(00) (-04) (-03)
	· · · · · · · · · · · · · · · · · · ·	n = 3		
$\begin{array}{c}0\\1\\2\\3\end{array}$	$\begin{array}{c} 6.76208 \ 535 \\ 6.51664 \ 310 \\ 2.63424 \ 203 \\ 6.96443 \ 154 \end{array}$	(-01) (-01) (-01) (-02)	$\begin{array}{c} 1.00000 & 000 \\ 1.59803 & 695 \\ 3.05417 & 676 \\ -8.78750 & 815 \end{array}$	$(00) \\ (-01) \\ (-02) \\ (-04)$
-		n = 4		
$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\end{array}$	$\begin{array}{c} 6.78176 \ \ 62666 \ \ 0 \\ 6.33124 \ \ 01791 \ \ 0 \\ 2.94479 \ \ 65177 \ \ 2 \\ 8.01320 \ \ 71141 \ \ 9 \\ 1.33918 \ \ 21294 \ \ 0 \end{array}$	$(-01) \\ (-01) \\ (-01) \\ (-02) \\ (-02) \\ (-02)$	$\begin{array}{c} 1.00000 \ 00000 \ 0 \\ 1.43740 \ 40039 \ 7 \\ 7.08662 \ 14845 \ 0 \\ 2.34579 \ 49473 \ 5 \\ -1.29449 \ 92883 \ 5 \end{array}$	$(00) \\ (-01) \\ (-02) \\ (-03) \\ (-05)$
		TABLE IIIC		
	$F_{3/2}(x) \cong \sum_{s=0}^{n}$	$p_s x^s \bigg/ \sum_{s=0}^n q_s x^s,$	$1 \leq x \leq 4$	
8	p_s		q_s	

			1.	
		n = 1		
0 1	$\begin{array}{c} 4.986 \\ 1.729 \end{array}$	(-01) (00)	$1.000 \\ -1.468$	(00) (-01)
	·	n = 2		
$egin{array}{c} 0 \ 1 \ 2 \end{array}$	$\begin{array}{c} 1.19607 \\ 7.33852 \\ 3.52295 \end{array}$	$(00) \\ (-01) \\ (-01)$	$\begin{array}{c} 1.00000 \\ -1.53064 \\ 1.04035 \end{array}$	$(00) \\ (-01) \\ (-02)$
		n = 3		
0 1 2 3	$\begin{array}{c} 1.15000 \ 145 \\ 9.43296 \ 764 \\ 3.26281 \ 283 \\ 7.72617 \ 906 \end{array}$	$(00) \\ (-01) \\ (-01) \\ (-02)$	$\begin{array}{c} 1.00000 & 000 \\ -7.28698 & 650 \\ 1.15139 & 877 \\ -5.74907 & 929 \end{array}$	$(00) \\ (-02) \\ (-02) \\ (-04)$
•		n = 4		· · ·
0 1 2 3 4	$\begin{array}{c} 1.15302 \ 13402 \\ 1.05915 \ 58972 \\ 4.68988 \ 03095 \\ 1.18829 \ 08784 \\ 1.94387 \ 55787 \end{array}$	$(00) \\ (00) \\ (-01) \\ (-01) \\ (-02)$	$\begin{array}{r} 1.00000 & 00000 \\ 3.73489 & 53841 \\ 2.32484 & 58137 \\ -1.37667 & 70874 \\ 4.64663 & 92781 \end{array}$	$(00) \\ (-02) \\ (-02) \\ (-03) \\ (-05) \end{cases}$
		1000 Contract Contrac		•

	$F_{-1/2}(x) \cong \sqrt{x} \lfloor 2 +$	$x^{-2}\sum_{s=0} p_s x^{-2s} / \sum_{s=0} p_s x^$	$\left[q_s x^{-2s} \right], 4 \leq $	≦ <i>x</i> <∞	
8	p_s			q.	
		n = 0			
0	-9.84535	(-01)	1.00000		(00)
		n = 1			
0 1	-5.86246 -1.58903	(-01) (02)	$1.00000 \\ 1.50627$		$(00) \\ (02)$
		n = 2			
0 1 2	$\begin{array}{r} -8.14958 \ 47 \\ 4.05212 \ 66 \\ -3.25435 \ 65 \end{array}$	(-01) (00) (02)	$1.00000 \\ -1.08676 \\ 3.84615$	00 28 01	(00) (01) (02)
		n = 3			
0 1 2 3	$\begin{array}{r} -8.24391 \ 144 \\ -2.04495 \ 807 \\ -8.96893 \ 377 \\ 4.88655 \ 638 \end{array}$	$(-01) \\ (00) \\ (02) \\ (03)$	$\begin{array}{r} 1.00000 \\ -4.88152 \\ 8.05727 \\ -3.56730 \end{array}$	000 379 048 597	$(00) \\ (-01) \\ (02) \\ (03)$
		n = 4			
0 1 2 3 4	$\begin{array}{r} -8.22255 \ 9330 \\ -3.62036 \ 9345 \\ -3.01538 \ 5410 \\ -7.04987 \ 1579 \\ -5.69814 \ 5924 \end{array}$	$(-01) \\ (01) \\ (03) \\ (04) \\ (04)$	$\begin{array}{c} 1.00000\\ 3.93568\\ 3.56875\\ 4.18189\\ 3.38513\end{array}$	0000 9841 6266 3625 8907	(00)(01)(03)(04)(05)

TABLE IVA $\sqrt{-\left[\alpha+\alpha\sum_{n=1}^{n}\left(\sum_{j=1}^{n}\alpha_{j}\right)\right]}$

$F_{1/2}(x) \cong x\sqrt{x} \left[2/3 + x^{-2} \sum_{s=0}^{n} p_s x^{-2s} / \sum_{s=0}^{n} q_s x^{-2s} \right], 4 \le x < \infty$	

\$	p_s		q_s	
		n = 0		
0	8.66045	(-01)	1.00000	(00)
		n = 1		
0 1	8.16118 1 8.76882 9	(-01) (00)	$\begin{array}{c} 1.00000 \ 0 \\ 8.94339 \ 7 \end{array}$	(00) (00)
		n = 2		
0 1 2	$\begin{array}{c} 8.22713 & 535 \\ 5.27498 & 049 \\ 2.90433 & 403 \end{array}$	$(-10) \\ (00) \\ (02)$	$\begin{array}{c} 1.00000 & 000 \\ 5.69335 & 697 \\ 3.22149 & 800 \end{array}$	(00) (00) (02)
		n = 3		
0 1 2 3	$\begin{array}{r} 8.22752 \ 754 \\ -7.55890 \ 283 \\ 2.07024 \ 852 \\ -4.71158 \ 007 \end{array}$	(-10) (00) (02) (03)	$\begin{array}{c} 1.00000 \ 000 \\ -9.89594 \ 310 \\ 2.31227 \ 330 \\ -5.22142 \ 719 \end{array}$	(00) (00) (02) (03)
		n = 4		
0 1 2 3 4	$\begin{array}{c} 8.22449 & 97626 \\ 2.00463 & 03393 \\ 1.82680 & 93446 \\ 1.22265 & 30374 \\ 1.40407 & 50092 \end{array}$	$(-01) \\ (01) \\ (03) \\ (04) \\ (05)$	$\begin{array}{c} 1.00000 & 00000 \\ 2.34862 & 07659 \\ 2.20134 & 83743 \\ 1.14426 & 73596 \\ 1.65847 & 15900 \end{array}$	(00)(01)(03)(04)(05)

.....

TABLE IVC

$F_{3/2}(x) \cong x^2 \sqrt{x} \Bigg[2/5 + x^{-2} \sum_{s=0}^n p_s x^{-2s} \Bigg/ \sum_{s=0}^n q_s x^{-2s} \Bigg], 4 \le x < \infty$						
8	<i>p</i> :		q.			
		n = 0				
0	2.4247	(00)	1.0000	(00)		
		n = 1				
0 1	$\begin{array}{r} 2.46929 \ 3 \\ -6.56036 \ 0 \end{array}$	$(00) \\ (-01)$	$\begin{array}{c} 1.00000 & 0 \\ 9.64792 & 7 \end{array}$	$(00) \\ (-02)$		
		n = 2				
0	2.46721 347	(00)	1.00000 000	(00)		
$1 \\ 2$	$\begin{array}{c} 1.99900 & 983 \\ 1.56338 & 125 \end{array}$	(01) (02)	$\begin{array}{c} 8.36525 \\ 6.90842 \\ 636 \end{array}$	(00) (01)		
		n = 3				
0	2.46741 6637	(00)	1.00000 0000	(00)		
1	9.77546 3043	(01)	3.99113 6128 9 41059 1778	(01)		
$\frac{2}{3}$	8.00686 7097	(03)	3.70648 4478	(02) (03)		
		n = 4				
0	2.46740 02368 4	(00)	1.00000 00000 0	(00)		
1	2.19167 58236 8	(02)	8.91125 14061 9	(01)		
23	1.23829 37907 5 2 20667 72496 8	(04)	9 02075 94520 4	(03)		
3 4	8.49442 92003 4	(05)	3.89960 91564 1	(05)		

errors. Reasonable rounding of the coefficients should not affect the overall accuracy.

Coefficients for all approximations indicated in Table I will be published in an Argonne National Laboratory report.

6. Acknowledgements. The authors wish to thank Mr. A. Lent for bringing these interesting functions to their attention, Mr. K. Hillstrom for programming assistance, Mrs. D. Haight for her expert typing and Dr. R. F. King for his helpful criticism of the manuscript.

Argonne National Laboratory Argonne, Illinois

1. A. C. BEER, M. N. CHASE & P. F. CHOQUARD, "Extension of McDougall-Stoner tables of the Fermi-Dirac functions," *Helv. Phys. Acta*, v. 28, 1955, pp. 529-542. MR **17**, 672. 2. G. A. CHISNALL, "New tables of Fermi-Dirac functions," *Jodrell Bank Annals*, v. 1,

1956, pp. 126–140. 3. W. J. CODY & J. STOER, "Rational Chebyshev approximations using interpolation." 4. R. B. DINGLE, "The Fermi-Dirac integrals $F_p(n) = (p!)^{-1} \int_0^\infty \epsilon^p (e^{\epsilon - n} + 1)^{-1} d\epsilon$," Appl.

4. R. B. DINGLE, "The Fermi-Dirac integrals $F_p(n) = (p!)^{-1} \int_0^\infty \epsilon^p (e^{\epsilon - n} + 1)^{-1} d\epsilon$," Appl. Sci. Res. Ser. B, v. 6, 1957, pp. 225–239. MR **19**, 133. 5. R. B. DINGLE, "Asymptotic expansions and converging factors. I: General theory and basic converging factors," Proc. Roy. Soc. London Ser. A, v. 244, 1958, pp. 456–475. MR **21** # 2145.

6. R. B. DINGLE, "Asymptotic expansions and converging factors. III: Gamma, psi and polygamma functions, and Fermi-Dirac and Bose-Einstein integrals," *Proc. Roy. Soc. London Ser.* A, v. 244, 1958, pp. 484-490. MR **21** # 2147.

W. FRASER & J. F. HART, "On the computation of rational approximations to continuous functions," Comm. ACM, v. 5, 1962, pp. 401-403.
 8. P. HENRICI, "The quotient-difference algorithm," Nat. Bur. Standards Appl. Math. Ser., No. 49, 1958, pp. 23-46. MR 20 \$\$1410.
 9. J. MCDOUGALL & E. C. STONER, "The computation of Fermi-Dirac functions," Philos. Trans. Roy. Soc. London Ser. A, v. 237, 1939, pp. 67-104.
 10. A. RALSTON & H. WILF, Mathematical Methods for Digital Computers, Vol. 2. (To appear.)

pear.)

11. J. R. RICE, "On the L_{∞} Walsh Arrays for $\Gamma(x)$ and Erfc (x)," Math. Comp., v. 18, 1964, pp. 617-626. MR 29 % 6233. 12. H. WERNER & G. RAYMANN, "An Approximation to the Fermi Integral $F_{1/2}(x)$," Math. Comp., v. 17, 1963, pp. 193-194. MR 28 % 1328.